而且芯片做大之后,单个芯片的成本会增加很多,因为芯片内部除了计算控制电路之外,还有通信电路,储存电路,物理内核越多,这些也就越复♛🉇🅋杂。
毕竟做大之后芯片内部的导线就变长了,电阻也就变大了,在电压不变的情况下,电容充电的速度🌈变慢,如果🆙🏼充电要快的话,就得增加电压,而电压增大了,那么电流也会相应的变大,发热如果过大的话,就直接烧毁了。
如今现实的例子摆在眼前的,🗏🚧是amd的线程撕裂者的芯片,就比普通☑⚗的锐龙芯片要大,然而其价格也是非常的高昂。
所以这条路是完全走不通的。
而叶凡的想法,是打算使用碳材料做晶体管,这🈞⛃是一种新颖的流派,曾经也被许多科学家所提出来。🍶
为什么这些科学家认为可以采用🗛🜗碳🝬元素呢?其实这跟碳元素本身的优质特性有很大的关系。🐾
例如说用碳纳米管所做的晶体管,它的电子迁移率可以是硅的一千倍,通俗来说就是🄅🞝🕋碳材料里面的电子群众基🆙🏼础要更🉁🄚加好。
再比如碳🜉⛾纳米管里面的电子自由程特别长,也就是电子的活🀱🀡♺动要更加的自由🙡🞡,而且不容易摩擦发热。
由于这些底层的优点,所以采用碳来做🄌晶体管,以及替代硅基底层,甚至不用🔀♈像是硅晶体管那么小,就可以取得同等水平的性能。
例如说阿美坚国防部曾经就在2018年所支持的一项研究,就希望用90nm规格的碳芯片,以实现7nm规格的硅芯片同等的性😽📧能。
如今的量子晶体管,其本质上也是另类的硅晶体管,只不过其💒内部发生迁移的并不是电子,而是量子罢了,但是⚭🔨其本身的硅性质是没法改⚆🏍😸变的。
而即便是用碳🏦来制作芯片,也是有许多的思路的,只不过这些思路都还是处于探索性的阶段,而最接近实用性的,也就是北大这项研究项目中所涉及的碳纳米管芯片这个领域。
早在2013年,阿美坚斯坦福大学就制造出来了世界上第一台碳纳米管计算机,而到了2019🌈年8月,麻省⚭🔨理工学院发布了全球第一款碳纳米管通用芯片,里面包含了14000个晶体管🕖。
在当时的《自然》杂♃🅪志上,连续刊登了三篇文章来推荐这项成果,由此可见当年到底造成了多大的轰动。
然而即🀡便是麻省理工学院所发表的这项轰动性的研🐘⛯究,也只是包含了14000个晶体管,这比起现在⛠的手机芯片动不动就上百亿个晶体管的规模,还差的很远。
而这里面的症结,就在于制造工艺这四个字上,要想制造出性能堪比商用元器件的碳纳米管芯片,一个重要的前提就🉁🄚是能制造得出高纯🛶♔度,🍨高密度,排列整齐的碳纳米管阵列。
一旦碳纳米管的纯度,密度不够高的话,或者是排列不争气,就很难可靠的制造出上亿个晶体管这种规模的商用芯片,因为保不准那个晶体🍨管就会出现故障。
曾经麻省理工在2019年所发布的这项研究🛞里面,所用到的碳纳米管☑⚗阵列的纯度只有🈭🁦🈂四个九,也就是99.99%。
而人们猜测这个纯度至少在六个九或者🄌是八个九的时候,才能💒够让碳纳米管芯片的性能比肩传统☝🀚芯片。
在七月份,北大的张志勇彭练矛教授的科研团队,通过独创的制备工艺,在4英寸的基底上,制备出纯度高达六个九,也🀼🂊🍇就是纯🅟🇸度高达99.9999%的碳纳米管阵列。
在密度和纯度这两个重要的💄🏕指标上,比过去的类似研究高出了1-🆝🐡🁘2个量级🙡🞡。
并且基于这种高品质的碳管阵列,研究人员还批量制作出来了相应的晶体管和环🅎🅛形振荡器来验证这种新工艺的批量生产潜🀼🂊🍇力。
通过实验发现,这些晶体管和环形振荡器的性能,首次超越了在同等尺寸下的🔀♈传统硅芯片里面的元器🍶件,证明🆙🏼了碳芯片确实是可能比硅芯片要更加强大。